Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrability of Free Noncommutative Functions (2005.09362v1)

Published 19 May 2020 in math.FA, math.OA, math.OC, and math.RA

Abstract: Noncommutative functions are graded functions between sets of square matrices of all sizes over two vector spaces that respect direct sums and similarities. They possess very strong regularity properties (reminiscent of the regularity properties of usual analytic functions) and admit a good difference-differential calculus. Noncommutative functions appear naturally in a large variety of settings: noncommutative algebra, systems and control, spectral theory, and free probability. Starting with pioneering work of J.L. Taylor, the theory was further developed by D.-V. Voiculescu, and established itself in recent years as a new and extremely active research area. The goal of the present paper is to establish a noncommutative analog of the Frobenius integrability theorem: we give necessary and sufficient conditions for higher order free noncommutative functions to have an antiderivative.

Summary

We haven't generated a summary for this paper yet.