Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Source Replacement Path Problem (2005.09262v2)

Published 19 May 2020 in cs.DS

Abstract: One of the classical line of work in graph algorithms has been the Replacement Path Problem: given a graph $G$, $s$ and $t$, find shortest paths from $s$ to $t$ avoiding each edge $e$ on the shortest path from $s$ to $t$. These paths are called replacement paths in literature. For an undirected and unweighted graph, (Malik, Mittal, and Gupta, Operation Research Letters, 1989) and (Hershberger and Suri, FOCS 2001) designed an algorithm that solves the replacement path problem in $\tilde O(m+n)$ time. It is natural to ask whether we can generalize the replacement path problem: {\em can we find all replacement paths from a source $s$ to all vertices in $G$?} This problem is called the Single Source Replacement Path Problem. Recently (Chechik and Cohen, SODA 2019) designed a randomized combinatorial algorithm that solves the Single Source Replacement Path Problem in $\tilde O(m\sqrt n\ + n2)$ time. One of the questions left unanswered by their work is the case when there are many sources, not one. When there are $n$ sources, the combinatorial algorithm of (Bernstein and Karger, STOC 2009) can be used to find all pair replacement path in $\tilde O(mn + n3)$ time. However, there is no result known for any general $\sigma$. Thus, the problem we study is defined as follows: given a set of $\sigma$ sources, we want to find the replacement path from these sources to all vertices in $G$. We give a randomized combinatorial algorithm for this problem that takes $\tilde O(m\sqrt{n \sigma} +\ \sigma n2)$ time. This result generalizes both results known for this problem. Our algorithm is much different and arguably simpler than (Chechik and Cohen, SODA 2019). Like them, we show a matching conditional lower bound using the Boolean Matrix Multiplication conjecture.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Manoj Gupta (25 papers)
  2. Rahul Jain (152 papers)
  3. Nitiksha Modi (1 paper)
Citations (5)

Summary

We haven't generated a summary for this paper yet.