Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a subset sums problem of Chen and Wu (2005.09201v1)

Published 19 May 2020 in math.NT

Abstract: For a set $A$, let $P(A)$ be the set of all finite subset sums of $A$. We prove that if a sequence $B={11\leq b_1<b_2<\cdots}$ satisfies $b_2=3b_1+5$, $b_3=3b_2+2$ and $b_{n+1}=3b_n+4b_{n-1}$ for all $n\geq 3$, then there is a sequence of positive integers $A={a_1<a_2<\cdots}$ such that $P(A)=\mathbb{N}\setminus B$. This result shows that the answer to the problem of Chen and Wu [`The inverse problem on subset sums', European. J. Combin. 34(2013), 841-845] is negative.

Summary

We haven't generated a summary for this paper yet.