Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the strength of general polynomials (2005.08617v3)

Published 18 May 2020 in math.AG and math.AC

Abstract: A slice decomposition is an expression of a homogeneous polynomial as a sum of forms with a linear factor. A strength decomposition is an expression of a homogeneous polynomial as a sum of reducible forms. The slice rank and strength of a polynomial are the minimal lengths of such decompositions, respectively. The slice rank is an upper bound for the strength and the gap between these two values can be arbitrary large. However, in line with a conjecture by Catalisano et al. on the dimensions of secant varieties of the varieties of reducible forms, we conjecture that equality holds for general forms. By using a weaker version of Fr\"oberg's Conjecture on the Hilbert series of ideals generated by general forms, we show that our conjecture holds up to degree $7$ and in degree $9$.

Summary

We haven't generated a summary for this paper yet.