Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Systolic Tensor Array: An Efficient Structured-Sparse GEMM Accelerator for Mobile CNN Inference (2005.08098v1)

Published 16 May 2020 in cs.DC, cs.AR, cs.LG, and eess.SP

Abstract: Convolutional neural network (CNN) inference on mobile devices demands efficient hardware acceleration of low-precision (INT8) general matrix multiplication (GEMM). The systolic array (SA) is a pipelined 2D array of processing elements (PEs), with very efficient local data movement, well suited to accelerating GEMM, and widely deployed in industry. In this work, we describe two significant improvements to the traditional SA architecture, to specifically optimize for CNN inference. Firstly, we generalize the traditional scalar PE, into a Tensor-PE, which gives rise to a family of new Systolic Tensor Array (STA) microarchitectures. The STA family increases intra-PE operand reuse and datapath efficiency, resulting in circuit area and power dissipation reduction of as much as 2.08x and 1.36x respectively, compared to the conventional SA at iso-throughput with INT8 operands. Secondly, we extend this design to support a novel block-sparse data format called density-bound block (DBB). This variant (STA-DBB) achieves a 3.14x and 1.97x improvement over the SA baseline at iso-throughput in area and power respectively, when processing specially-trained DBB-sparse models, while remaining fully backwards compatible with dense models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhi-Gang Liu (7 papers)
  2. Paul N. Whatmough (18 papers)
  3. Matthew Mattina (35 papers)
Citations (70)

Summary

We haven't generated a summary for this paper yet.