Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Adversarial Perturbations: A Survey (2005.08087v1)

Published 16 May 2020 in cs.CV, cs.CR, and cs.LG

Abstract: Over the past decade, Deep Learning has emerged as a useful and efficient tool to solve a wide variety of complex learning problems ranging from image classification to human pose estimation, which is challenging to solve using statistical machine learning algorithms. However, despite their superior performance, deep neural networks are susceptible to adversarial perturbations, which can cause the network's prediction to change without making perceptible changes to the input image, thus creating severe security issues at the time of deployment of such systems. Recent works have shown the existence of Universal Adversarial Perturbations, which, when added to any image in a dataset, misclassifies it when passed through a target model. Such perturbations are more practical to deploy since there is minimal computation done during the actual attack. Several techniques have also been proposed to defend the neural networks against these perturbations. In this paper, we attempt to provide a detailed discussion on the various data-driven and data-independent methods for generating universal perturbations, along with measures to defend against such perturbations. We also cover the applications of such universal perturbations in various deep learning tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ashutosh Chaubey (7 papers)
  2. Nikhil Agrawal (2 papers)
  3. Kavya Barnwal (2 papers)
  4. Keerat K. Guliani (1 paper)
  5. Pramod Mehta (1 paper)
Citations (45)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com