Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Linearities Improve OrigiNet based on Active Imaging for Micro Expression Recognition (2005.07991v1)

Published 16 May 2020 in cs.CV

Abstract: Micro expression recognition (MER)is a very challenging task as the expression lives very short in nature and demands feature modeling with the involvement of both spatial and temporal dynamics. Existing MER systems exploit CNN networks to spot the significant features of minor muscle movements and subtle changes. However, existing networks fail to establish a relationship between spatial features of facial appearance and temporal variations of facial dynamics. Thus, these networks were not able to effectively capture minute variations and subtle changes in expressive regions. To address these issues, we introduce an active imaging concept to segregate active changes in expressive regions of a video into a single frame while preserving facial appearance information. Moreover, we propose a shallow CNN network: hybrid local receptive field based augmented learning network (OrigiNet) that efficiently learns significant features of the micro-expressions in a video. In this paper, we propose a new refined rectified linear unit (RReLU), which overcome the problem of vanishing gradient and dying ReLU. RReLU extends the range of derivatives as compared to existing activation functions. The RReLU not only injects a nonlinearity but also captures the true edges by imposing additive and multiplicative property. Furthermore, we present an augmented feature learning block to improve the learning capabilities of the network by embedding two parallel fully connected layers. The performance of proposed OrigiNet is evaluated by conducting leave one subject out experiments on four comprehensive ME datasets. The experimental results demonstrate that OrigiNet outperformed state-of-the-art techniques with less computational complexity.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Monu Verma (11 papers)
  2. Santosh Kumar Vipparthi (21 papers)
  3. Girdhari Singh (7 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.