Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep-learning of Parametric Partial Differential Equations from Sparse and Noisy Data (2005.07916v1)

Published 16 May 2020 in physics.comp-ph, cs.AI, cs.LG, cs.NE, and stat.ML

Abstract: Data-driven methods have recently made great progress in the discovery of partial differential equations (PDEs) from spatial-temporal data. However, several challenges remain to be solved, including sparse noisy data, incomplete candidate library, and spatially- or temporally-varying coefficients. In this work, a new framework, which combines neural network, genetic algorithm and adaptive methods, is put forward to address all of these challenges simultaneously. In the framework, a trained neural network is utilized to calculate derivatives and generate a large amount of meta-data, which solves the problem of sparse noisy data. Next, genetic algorithm is utilized to discover the form of PDEs and corresponding coefficients with an incomplete candidate library. Finally, a two-step adaptive method is introduced to discover parametric PDEs with spatially- or temporally-varying coefficients. In this method, the structure of a parametric PDE is first discovered, and then the general form of varying coefficients is identified. The proposed algorithm is tested on the Burgers equation, the convection-diffusion equation, the wave equation, and the KdV equation. The results demonstrate that this method is robust to sparse and noisy data, and is able to discover parametric PDEs with an incomplete candidate library.

Citations (53)

Summary

We haven't generated a summary for this paper yet.