Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties (2005.07609v3)

Published 15 May 2020 in physics.comp-ph, cond-mat.mtrl-sci, and cs.LG

Abstract: Realizing general inverse design could greatly accelerate the discovery of new materials with user-defined properties. However, state-of-the-art generative models tend to be limited to a specific composition or crystal structure. Herein, we present a framework capable of general inverse design (not limited to a given set of elements or crystal structures), featuring a generalized invertible representation that encodes crystals in both real and reciprocal space, and a property-structured latent space from a variational autoencoder (VAE). In three design cases, the framework generates 142 new crystals with user-defined formation energies, bandgap, thermoelectric (TE) power factor, and combinations thereof. These generated crystals, absent in the training database, are validated by first-principles calculations. The success rates (number of first-principles-validated target-satisfying crystals/number of designed crystals) ranges between 7.1% and 38.9%. These results represent a significant step toward property-driven general inverse design using generative models, although practical challenges remain when coupled with experimental synthesis.

Citations (103)

Summary

We haven't generated a summary for this paper yet.