Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Odd Connections on Supermanifolds: Existence and relation with Affine Connections (2005.07449v3)

Published 15 May 2020 in math-ph, gr-qc, hep-th, math.DG, and math.MP

Abstract: The notion of an odd quasi-connection on a supermanifold, which is loosely an affine connection that carries non-zero Grassmann parity, is examined. Their torsion and curvature are defined, however, in general, they are not tensors. A special class of such generalised connections, referred to as odd connections in this paper, have torsion and curvature tensors. Part of the structure is an odd involution of the tangent bundle of the supermanifold and this puts drastic restrictions on the supermanifolds that admit odd connections. In particular, they must have equal number of even and odd dimensions. Amongst other results, we show that an odd connection is defined, up to an odd tensor field of type $(1,2)$, by an affine connection and an odd endomorphism of the tangent bundle. Thus, the theory of odd connections and affine connections are not completely separate theories. As an example relevant to physics, it is shown that $N= 1$ super-Minkowski spacetime admits a natural odd connection.

Summary

We haven't generated a summary for this paper yet.