Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations (2005.07370v2)

Published 15 May 2020 in cs.GT

Abstract: We develop polynomial-time algorithms for the fair and efficient allocation of indivisible goods among $n$ agents that have subadditive valuations over the goods. We first consider the Nash social welfare as our objective and design a polynomial-time algorithm that, in the value oracle model, finds an $8n$-approximation to the Nash optimal allocation. Subadditive valuations include XOS (fractionally subadditive) and submodular valuations as special cases. Our result, even for the special case of submodular valuations, improves upon the previously best known $O(n \log n)$-approximation ratio of Garg et al. (2020). More generally, we study maximization of $p$-mean welfare. The $p$-mean welfare is parameterized by an exponent term $p \in (-\infty, 1]$ and encompasses a range of welfare functions, such as social welfare ($p = 1$), Nash social welfare ($p \to 0$), and egalitarian welfare ($p \to -\infty$). We give an algorithm that, for subadditive valuations and any given $p \in (-\infty, 1]$, computes (in the value oracle model and in polynomial time) an allocation with $p$-mean welfare at least $\frac{1}{8n}$ times the optimal. Further, we show that our approximation guarantees are essentially tight for XOS and, hence, subadditive valuations. We adapt a result of Dobzinski et al. (2010) to show that, under XOS valuations, an $O \left(n{1-\varepsilon} \right)$ approximation for the $p$-mean welfare for any $p \in (-\infty,1]$ (including the Nash social welfare) requires exponentially many value queries; here, $\varepsilon>0$ is any fixed constant.

Citations (38)

Summary

We haven't generated a summary for this paper yet.