Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Perception Model for Rapid and Adaptive Low-light Image Enhancement (2005.07343v1)

Published 15 May 2020 in eess.IV and cs.CV

Abstract: Low-light image enhancement is a promising solution to tackle the problem of insufficient sensitivity of human vision system (HVS) to perceive information in low light environments. Previous Retinex-based works always accomplish enhancement task by estimating light intensity. Unfortunately, single light intensity modelling is hard to accurately simulate visual perception information, leading to the problems of imbalanced visual photosensitivity and weak adaptivity. To solve these problems, we explore the precise relationship between light source and visual perception and then propose the visual perception (VP) model to acquire a precise mathematical description of visual perception. The core of VP model is to decompose the light source into light intensity and light spatial distribution to describe the perception process of HVS, offering refinement estimation of illumination and reflectance. To reduce complexity of the estimation process, we introduce the rapid and adaptive $\mathbf{\beta}$ and $\mathbf{\gamma}$ functions to build an illumination and reflectance estimation scheme. Finally, we present a optimal determination strategy, consisting of a \emph{cycle operation} and a \emph{comparator}. Specifically, the \emph{comparator} is responsible for determining the optimal enhancement results from multiple enhanced results through implementing the \emph{cycle operation}. By coordinating the proposed VP model, illumination and reflectance estimation scheme, and the optimal determination strategy, we propose a rapid and adaptive framework for low-light image enhancement. Extensive experiment results demenstrate that the proposed method achieves better performance in terms of visual comparison, quantitative assessment, and computational efficiency, compared with the currently state-of-the-arts.

Citations (2)

Summary

We haven't generated a summary for this paper yet.