Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CoSimGNN: Towards Large-scale Graph Similarity Computation (2005.07115v7)

Published 14 May 2020 in cs.LG, cs.SI, and stat.ML

Abstract: The ability to compute similarity scores between graphs based on metrics such as Graph Edit Distance (GED) is important in many real-world applications. Computing exact GED values is typically an NP-hard problem and traditional algorithms usually achieve an unsatisfactory trade-off between accuracy and efficiency. Recently, Graph Neural Networks (GNNs) provide a data-driven solution for this task, which is more efficient while maintaining prediction accuracy in small graph (around 10 nodes per graph) similarity computation. Existing GNN-based methods, which either respectively embeds two graphs (lack of low-level cross-graph interactions) or deploy cross-graph interactions for whole graph pairs (redundant and time-consuming), are still not able to achieve competitive results when the number of nodes in graphs increases. In this paper, we focus on similarity computation for large-scale graphs and propose the "embedding-coarsening-matching" framework CoSimGNN, which first embeds and coarsens large graphs with adaptive pooling operation and then deploys fine-grained interactions on the coarsened graphs for final similarity scores. Furthermore, we create several synthetic datasets which provide new benchmarks for graph similarity computation. Detailed experiments on both synthetic and real-world datasets have been conducted and CoSimGNN achieves the best performance while the inference time is at most 1/3 of that of previous state-of-the-art.

Citations (5)

Summary

We haven't generated a summary for this paper yet.