Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training conformal predictors (2005.07037v1)

Published 14 May 2020 in cs.LG and stat.ML

Abstract: Efficiency criteria for conformal prediction, such as \emph{observed fuzziness} (i.e., the sum of p-values associated with false labels), are commonly used to \emph{evaluate} the performance of given conformal predictors. Here, we investigate whether it is possible to exploit efficiency criteria to \emph{learn} classifiers, both conformal predictors and point classifiers, by using such criteria as training objective functions. The proposed idea is implemented for the problem of binary classification of hand-written digits. By choosing a 1-dimensional model class (with one real-valued free parameter), we can solve the optimization problems through an (approximate) exhaustive search over (a discrete version of) the parameter space. Our empirical results suggest that conformal predictors trained by minimizing their observed fuzziness perform better than conformal predictors trained in the traditional way by minimizing the \emph{prediction error} of the corresponding point classifier. They also have a reasonable performance in terms of their prediction error on the test set.

Citations (14)

Summary

We haven't generated a summary for this paper yet.