Papers
Topics
Authors
Recent
2000 character limit reached

New realizations of algebras of the Askey-Wilson type in terms of Lie and quantum algebras

Published 20 Apr 2020 in math.QA, math-ph, and math.MP | (2005.06957v1)

Abstract: The Askey-Wilson algebra is realized in terms of the elements of the quantum algebras $U_q(\mathfrak{su}(2))$ or $U_q(\mathfrak{su}(1,1))$. A new realization of the Racah algebra in terms of the Lie algebras $\mathfrak{su}(2)$ or $\mathfrak{su}(1,1)$ is given also. Details for different specializations are provided. The advantage of these new realizations is that one generator of the Askey-Wilson (or Racah) algebra becomes diagonal in the usual representation of the quantum algebras whereas the second one is tridiagonal. This allows to recover easily the recurrence relations of the associated orthogonal polynomials of the Askey scheme. These realizations involve rational functions of the Cartan generator of the quantum algebras, they are linear with respect to the other generators and depend on the Casimir element of the quantum algebras.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.