Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anisotropic Moser-Trudinger inequality involving $L^{n}$ norm in the entire space $\mathbb{R}^{n}$ (2005.06513v1)

Published 12 May 2020 in math.AP

Abstract: Let $F: \mathbb{R}{n}\rightarrow [0,+\infty) $ be a convex function of class $C{2}( \mathbb{R}{n}\backslash{0})$ which is even and positively homogeneous of degree 1, and its polar $F{0}$ represents a Finsler metric on $\mathbb{R}{n}$. The anisotropic Sobolev norm in $W{1,n}\left(\mathbb{R}{n}\right)$ is defined by \begin{equation*} ||u||{F}=\left(\int{\mathbb{R}{n}}F{n}(\nabla u)+|u|{n}\right){\frac{1}{n}}. \end{equation*} In this paper, the following sharp anisotropic Moser-Trudinger inequality involving $L{n}$ norm [ \underset{u\in W{1,n}( \mathbb{R}{n}),\left\Vert u\right\Vert {F}\leq 1}{\sup}\int{ \mathbb{R} {n}}\Phi\left( \lambda_{n}\left\vert u\right\vert {\frac{n}{n-1}}\left( 1+\alpha\left\Vert u\right\Vert {n}{n}\right) {\frac{1}{n-1}}\right) dx<+\infty ] in the entire space $\mathbb{R}n$ for any $0\leq\alpha<1$ is established, where $\Phi\left( t\right) =e{t}-\underset{j=0}{\overset{n-2}{\sum}}% \frac{t{j}}{j!}$, $\lambda{n}=n{\frac{n}{n-1}}\kappa_{n}{\frac{1}{n-1}}$ and $\kappa_{n}$ is the volume of the unit Wulff ball in $\mathbb{R}n$. It is also shown that the above supremum is infinity for all $\alpha\geq1$. Moreover, we prove the supremum is attained, namely, there exists a maximizer for the above supremum when $\alpha>0$ is sufficiently small. The proof of main results in this paper is based on the method of blow-up analysis.

Summary

We haven't generated a summary for this paper yet.