Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coordinates-based Resource Allocation Through Supervised Machine Learning (2005.06509v1)

Published 13 May 2020 in cs.LG, eess.SP, and stat.ML

Abstract: Appropriate allocation of system resources is essential for meeting the increased user-traffic demands in the next generation wireless technologies. Traditionally, the system relies on channel state information (CSI) of the users for optimizing the resource allocation, which becomes costly for fast-varying channel conditions. Considering that future wireless technologies will be based on dense network deployment, where the mobile terminals are in line-of-sight of the transmitters, the position information of terminals provides an alternative to estimate the channel condition. In this work, we propose a coordinates-based resource allocation scheme using supervised machine learning techniques, and investigate how efficiently this scheme performs in comparison to the traditional approach under various propagation conditions. We consider a simplistic system set up as a first step, where a single transmitter serves a single mobile user. The performance results show that the coordinates-based resource allocation scheme achieves a performance very close to the CSI-based scheme, even when the available coordinates of terminals are erroneous. The proposed scheme performs consistently well with realistic-system simulation, requiring only 4 s of training time, and the appropriate resource allocation is predicted in less than 90 microseconds with a learnt model of size less than 1 kB.

Citations (7)

Summary

We haven't generated a summary for this paper yet.