Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cumulative Games: Who is the current player? (2005.06326v1)

Published 13 May 2020 in cs.GT and math.CO

Abstract: Combinatorial Game Theory (CGT) is a branch of game theory that has developed almost independently from Economic Game Theory (EGT), and is concerned with deep mathematical properties of 2-player 0-sum games that are defined over various combinatorial structures. The aim of this work is to lay foundations to bridging the conceptual and technical gaps between CGT and EGT, here interpreted as so-called Extensive Form Games, so they can be treated within a unified framework. More specifically, we introduce a class of $n$-player, general-sum games, called Cumulative Games, that can be analyzed by both CGT and EGT tools. We show how two of the most fundamental definitions of CGT---the outcome function, and the disjunctive sum operator---naturally extend to the class of Cumulative Games. The outcome function allows for an efficient equilibrium computation under certain restrictions, and the disjunctive sum operator lets us define a partial order over games, according to the advantage that a certain player has. Finally, we show that any Extensive Form Game can be written as a Cumulative Game.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Urban Larsson (48 papers)
  2. Reshef Meir (43 papers)
  3. Yair Zick (36 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.