Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Handling Concept Drift for Predictions in Business Process Mining (2005.05810v2)

Published 12 May 2020 in cs.LG and stat.ML

Abstract: Predictive services nowadays play an important role across all business sectors. However, deployed machine learning models are challenged by changing data streams over time which is described as concept drift. Prediction quality of models can be largely influenced by this phenomenon. Therefore, concept drift is usually handled by retraining of the model. However, current research lacks a recommendation which data should be selected for the retraining of the machine learning model. Therefore, we systematically analyze different data selection strategies in this work. Subsequently, we instantiate our findings on a use case in process mining which is strongly affected by concept drift. We can show that we can improve accuracy from 0.5400 to 0.7010 with concept drift handling. Furthermore, we depict the effects of the different data selection strategies.

Citations (12)

Summary

We haven't generated a summary for this paper yet.