Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VIDIT: Virtual Image Dataset for Illumination Transfer (2005.05460v2)

Published 11 May 2020 in cs.CV and eess.IV

Abstract: Deep image relighting is gaining more interest lately, as it allows photo enhancement through illumination-specific retouching without human effort. Aside from aesthetic enhancement and photo montage, image relighting is valuable for domain adaptation, whether to augment datasets for training or to normalize input test data. Accurate relighting is, however, very challenging for various reasons, such as the difficulty in removing and recasting shadows and the modeling of different surfaces. We present a novel dataset, the Virtual Image Dataset for Illumination Transfer (VIDIT), in an effort to create a reference evaluation benchmark and to push forward the development of illumination manipulation methods. Virtual datasets are not only an important step towards achieving real-image performance but have also proven capable of improving training even when real datasets are possible to acquire and available. VIDIT contains 300 virtual scenes used for training, where every scene is captured 40 times in total: from 8 equally-spaced azimuthal angles, each lit with 5 different illuminants.

Citations (38)

Summary

We haven't generated a summary for this paper yet.