Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating inverse FEM matrices on non-uniform meshes with $\mathcal{H}$-matrices (2005.04999v2)

Published 11 May 2020 in math.NA and cs.NA

Abstract: We consider the approximation of the inverse of the finite element stiffness matrix in the data sparse $\mathcal{H}$-matrix format. For a large class of shape regular but possibly non-uniform meshes including graded meshes, we prove that the inverse of the stiffness matrix can be approximated in the $\mathcal{H}$-matrix format at an exponential rate in the block rank. Since the storage complexity of the hierarchical matrix is logarithmic-linear and only grows linearly in the block-rank, we obtain an efficient approximation that can be used, e.g., as an approximate direct solver or preconditioner for iterative solvers.

Citations (5)

Summary

We haven't generated a summary for this paper yet.