Papers
Topics
Authors
Recent
2000 character limit reached

No-arbitrage concepts in topological vector lattices

Published 11 May 2020 in math.FA, math.PR, and q-fin.MF | (2005.04923v3)

Abstract: We provide a general framework for no-arbitrage concepts in topological vector lattices, which covers many of the well-known no-arbitrage concepts as particular cases. The main structural condition we impose is that the outcomes of trading strategies with initial wealth zero and those with positive initial wealth have the structure of a convex cone. As one consequence of our approach, the concepts NUPBR, NAA$_1$ and NA$_1$ may fail to be equivalent in our general setting. Furthermore, we derive abstract versions of the fundamental theorem of asset pricing (FTAP), including an abstract FTAP on Banach function spaces, and investigate when the FTAP is warranted in its classical form with a separating measure. We also consider a financial market with semimartingales which does not need to have a num\'{e}raire, and derive results which show the links between the no-arbitrage concepts by only using the theory of topological vector lattices and well-known results from stochastic analysis in a sequence of short proofs.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.