Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Perturbative Completion of Hopf-Algebraic Dyson-Schwinger Equations (2005.04265v1)

Published 8 May 2020 in hep-th, math-ph, and math.MP

Abstract: For certain quantum field theories, the Kreimer-Connes Hopf-algebraic approach to renormalization reduces the Dyson-Schwinger equations to a system of non-linear ordinary differential equations for the expansion coefficients of the renormalized Green's function. We apply resurgent asymptotic analysis to find the trans-series solutions which provide the non-perturbative completion of these formal Dyson-Schwinger expansions. We illustrate the general approach with the concrete example of four dimensional massless Yukawa theory, connecting with the exact functional solution found by Broadhurst and Kreimer. The trans-series solution is associated with the iterative form of the Dyson-Schwinger equations, and displays renormalon-like structure of integer-repeated Borel singularities. Extraction of the Stokes constant is possible due to a property we call `functional resurgence'.

Summary

We haven't generated a summary for this paper yet.