Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid 2-stage Imperialist Competitive Algorithm with Ant Colony Optimization for Solving Multi-Depot Vehicle Routing Problem (2005.04157v1)

Published 7 Apr 2020 in cs.NE and cs.AI

Abstract: The Multi-Depot Vehicle Routing Problem (MDVRP) is a real-world model of the simplistic Vehicle Routing Problem (VRP) that considers how to satisfy multiple customer demands from numerous depots. This paper introduces a hybrid 2-stage approach based on two population-based algorithms - Ant Colony Optimization (ACO) that mimics ant behaviour in nature and the Imperialist Competitive Algorithm (ICA) that is based on geopolitical relationships between countries. In the proposed hybrid algorithm, ICA is responsible for customer assignment to the depots while ACO is routing and sequencing the customers. The algorithm is compared to non-hybrid ACO and ICA as well as four other state-of-the-art methods across 23 common Cordreaus benchmark instances. Results show clear improvement over simple ACO and ICA and demonstrate very competitive results when compared to other rival algorithms.

Summary

We haven't generated a summary for this paper yet.