Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust distributed model predictive control of linear systems: analysis and synthesis (2005.04006v2)

Published 8 May 2020 in eess.SY and cs.SY

Abstract: To provide robustness of distributed model predictive control (DMPC), this work proposes a robust DMPC formulation for discrete-time linear systems subject to unknown-but-bounded disturbances. Taking advantage of the structure of certain classes of distributed systems seen in applications with interagent coupling like vehicle platooning, a novel robust DMPC is formulated. The proposed approach is characterised by separable terminal costs and locally robust terminal sets, with the latter sets adaptively estimated in the online optimisation problem. A constraint tightening approach based on a set-membership approach is used to guarantee constraint satisfaction for coupled subsystems in the presence of disturbances. Under this formulation, the closed-loop system is shown to be recursively feasible and input-to-state stable. To aid in the deployment of the proposed robust DMPC, a possible synthesis method and design conditions for practical implementation are presented. Finally, simulation results with a mass-spring-damper system are provided to demonstrate the proposed robust DMPC.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ye Wang (248 papers)
  2. Chris Manzie (50 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.