Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressing Large Sample Data for Discriminant Analysis (2005.03858v1)

Published 8 May 2020 in stat.ML and cs.LG

Abstract: Large-sample data became prevalent as data acquisition became cheaper and easier. While a large sample size has theoretical advantages for many statistical methods, it presents computational challenges. Sketching, or compression, is a well-studied approach to address these issues in regression settings, but considerably less is known about its performance in classification settings. Here we consider the computational issues due to large sample size within the discriminant analysis framework. We propose a new compression approach for reducing the number of training samples for linear and quadratic discriminant analysis, in contrast to existing compression methods which focus on reducing the number of features. We support our approach with a theoretical bound on the misclassification error rate compared to the Bayes classifier. Empirical studies confirm the significant computational gains of the proposed method and its superior predictive ability compared to random sub-sampling.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Alexander F. Lapanowski (2 papers)
  2. Irina Gaynanova (35 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.