Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantifying Uncertainties on Fission Fragment Mass Yields With Mixture Density Networks (2005.03198v1)

Published 7 May 2020 in nucl-th and nucl-ex

Abstract: Probabilistic machine learning techniques can learn both complex relations between input features and output quantities of interest as well as take into account stochasticity or uncertainty within a data set. In this initial work, we explore the use of one such probabilistic network, the Mixture Density Network (MDN), to reproduce fission yields and their uncertainties. We study mass yields for the spontaneous fission of ${252}$Cf, exploring the number of training samples needed for converged predictions, how different levels of uncertainty propagate from the training set to the MDN predictions, and how well physical constraints of the yields - such as normalization and symmetry - are upheld by the algorithm. Finally, we test the ability of the MDN to interpolate between and extrapolate beyond samples in the training set using energy-dependent mass yields for the neutron-induced fission on ${235}$U. The MDN provides a reliable way to include and predict uncertainties and is a promising path forward for supplementing sparse sets of nuclear data.

Summary

We haven't generated a summary for this paper yet.