Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey of Algorithms for Black-Box Safety Validation of Cyber-Physical Systems (2005.02979v3)

Published 6 May 2020 in cs.LG, cs.AI, cs.SY, eess.SY, and stat.ML

Abstract: Autonomous cyber-physical systems (CPS) can improve safety and efficiency for safety-critical applications, but require rigorous testing before deployment. The complexity of these systems often precludes the use of formal verification and real-world testing can be too dangerous during development. Therefore, simulation-based techniques have been developed that treat the system under test as a black box operating in a simulated environment. Safety validation tasks include finding disturbances in the environment that cause the system to fail (falsification), finding the most-likely failure, and estimating the probability that the system fails. Motivated by the prevalence of safety-critical artificial intelligence, this work provides a survey of state-of-the-art safety validation techniques for CPS with a focus on applied algorithms and their modifications for the safety validation problem. We present and discuss algorithms in the domains of optimization, path planning, reinforcement learning, and importance sampling. Problem decomposition techniques are presented to help scale algorithms to large state spaces, which are common for CPS. A brief overview of safety-critical applications is given, including autonomous vehicles and aircraft collision avoidance systems. Finally, we present a survey of existing academic and commercially available safety validation tools.

Citations (156)

Summary

We haven't generated a summary for this paper yet.