Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Robust Bayesian Copas Selection Model for Quantifying and Correcting Publication Bias

Published 6 May 2020 in stat.ME | (2005.02930v3)

Abstract: The validity of conclusions from meta-analysis is potentially threatened by publication bias. Most existing procedures for correcting publication bias assume normality of the study-specific effects that account for between-study heterogeneity. However, this assumption may not be valid, and the performance of these bias correction procedures can be highly sensitive to departures from normality. Further, there exist few measures to quantify the magnitude of publication bias based on selection models. In this paper, we address both of these issues. First, we explore the use of heavy-tailed distributions for the study-specific effects within a Bayesian hierarchical framework. The deviance information criterion (DIC) is used to determine the appropriate distribution to use for conducting the final analysis. Second, we develop a new measure to quantify the magnitude of publication bias based on Hellinger distance. Our measure is easy to interpret and takes advantage of the estimation uncertainty afforded naturally by the posterior distribution. We illustrate our proposed approach through simulation studies and meta-analyses on lung cancer and antidepressants. To assess the prevalence of publication bias, we apply our method to 1500 meta-analyses of dichotomous outcomes in the Cochrane Database of Systematic Reviews. Our methods are implemented in the publicly available R package RobustBayesianCopas.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.