Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Autoencoders for DOA Estimation of Coherent Sources using Imperfect Antenna Array (2005.02728v1)

Published 6 May 2020 in eess.SP, cs.IT, and math.IT

Abstract: In this paper a robust algorithm for DOA estimation of coherent sources in presence of antenna array imperfections is presented. We exploit the current advances of deep learning to overcome two of the most common problems facing the state of the art DOA algorithms (i.e. coherent sources and array imperfections). We propose a deep auto encoder (AE) that is able to correctly resolve coherent sources without the need of spatial smoothing, hence avoiding possible processing overhead and delays. Moreover, we assumed the presence of array imperfections in the received signal model such as mutual coupling, gain/ phase mismatches, and position errors. The deep AE is trained using the covariance matrix of the received signal, where it alleviates the effect of imperfections, and at the same time act as a filters for the coherent sources. The results show significant improvement compared to the methods used in the literature.

Citations (11)

Summary

We haven't generated a summary for this paper yet.