Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probing the Natural Language Inference Task with Automated Reasoning Tools (2005.02573v1)

Published 6 May 2020 in cs.AI, cs.CL, and cs.SC

Abstract: The Natural Language Inference (NLI) task is an important task in modern NLP, as it asks a broad question to which many other tasks may be reducible: Given a pair of sentences, does the first entail the second? Although the state-of-the-art on current benchmark datasets for NLI are deep learning-based, it is worthwhile to use other techniques to examine the logical structure of the NLI task. We do so by testing how well a machine-oriented controlled natural language (Attempto Controlled English) can be used to parse NLI sentences, and how well automated theorem provers can reason over the resulting formulae. To improve performance, we develop a set of syntactic and semantic transformation rules. We report their performance, and discuss implications for NLI and logic-based NLP.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zaid Marji (3 papers)
  2. Animesh Nighojkar (7 papers)
  3. John Licato (13 papers)
Citations (2)