Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher Specht bases for generalizations of the coinvariant ring (2005.02110v3)

Published 5 May 2020 in math.CO

Abstract: The classical coinvariant ring $R_n$ is defined as the quotient of a polynomial ring in $n$ variables by the positive-degree $S_n$-invariants. It has a known basis that respects the decomposition of $R_n$ into irreducible $S_n$-modules, consisting of the higher specht polynomials due to Ariki, Terasoma, and Yamada. We provide an extension of the higher Specht basis to the generalized coinvariant rings $R_{n,k}$. We also give a conjectured higher Specht basis for the Garsia-Procesi modules $R_\mu$, and provide a proof of the conjecture in the case of two-row partition shapes $\mu$. We then combine these results to give a higher Specht basis for an infinite subfamily of the modules $R_{n,k,\mu}$ recently defined by Griffin, which are a common generalization of $R_{n,k}$ and $R_{\mu}$.

Summary

We haven't generated a summary for this paper yet.