2000 character limit reached
Superposition for Lambda-Free Higher-Order Logic (2005.02094v4)
Published 5 May 2020 in cs.LO and cs.AI
Abstract: We introduce refutationally complete superposition calculi for intentional and extensional clausal $\lambda$-free higher-order logic, two formalisms that allow partial application and applied variables. The calculi are parameterized by a term order that need not be fully monotonic, making it possible to employ the $\lambda$-free higher-order lexicographic path and Knuth-Bendix orders. We implemented the calculi in the Zipperposition prover and evaluated them on Isabelle/HOL and TPTP benchmarks. They appear promising as a stepping stone towards complete, highly efficient automatic theorem provers for full higher-order logic.
- DISCOUNT: A system for distributed equational deduction. In Jieh Hsiang, editor, RTA-95, volume 914 of LNCS, pages 397–402. Springer, 1995.
- Peter B. Andrews. Resolution in type theory. J. Symb. Log., 36(3):414–432, 1971.
- Peter B. Andrews. Classical type theory. In John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume II, pages 965–1007. Elsevier and MIT Press, 2001.
- Superposition for lambda-free higher-order logic. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, IJCAR 2018, volume 10900 of LNCS, pages 28–46. Springer, 2018.
- Encoding monomorphic and polymorphic types. Log. Meth. Comput. Sci., 12(4:13):1–52, 2016.
- Superposition with lambdas. J. Autom. Reason., 2021.
- A transfinite Knuth–Bendix order for lambda-free higher-order terms. In Leonardo de Moura, editor, CADE-26, volume 10395 of LNCS, pages 432–453. Springer, 2017.
- Interactive Theorem Proving and Program Development: Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer, 2004.
- Michael Beeson. Lambda logic. In David A. Basin and Michaël Rusinowitch, editors, IJCAR 2004, volume 3097 of LNCS, pages 460–474. Springer, 2004.
- Alexander Bentkamp. Formalization of the embedding path order for lambda-free higher-order terms. Archive of Formal Proofs, 2018. http://isa-afp.org/entries/Lambda_Free_EPO.html.
- Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput., 4(3):217–247, 1994.
- Resolution theorem proving. In John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I, pages 19–99. Elsevier and MIT Press, 2001.
- Hammering towards QED. J. Formaliz. Reas., 9(1):101–148, 2016.
- Automation of higher-order logic. In Jörg H. Siekmann, editor, Computational Logic, volume 9 of Handbook of the History of Logic, pages 215–254. Elsevier, 2014.
- Sledgehammer: Judgement Day. In Jürgen Giesl and Reiner Hähnle, editors, IJCAR 2010, volume 6173 of LNCS, pages 107–121. Springer, 2010.
- Expressing polymorphic types in a many-sorted language. In Cesare Tinelli and Viorica Sofronie-Stokkermans, editors, FroCoS 2011, volume 6989 of LNCS, pages 87–102. Springer, 2011.
- TFF1: The TPTP typed first-order form with rank-1 polymorphism. In Maria Paola Bonacina, editor, CADE-24, volume 7898 of LNCS, pages 414–420. Springer, 2013.
- LEO-II—A cooperative automatic theorem prover for higher-order logic. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, IJCAR 2008, volume 5195 of LNCS, pages 162–170. Springer, 2008.
- Paramodulation with non-monotonic orderings and simplification. J. Autom. Reason., 50(1):51–98, 2013.
- Restricted combinatory unification. In Pascal Fontaine, editor, CADE-27, volume 11716 of LNCS, pages 74–93. Springer, 2019.
- A combinator-based superposition calculus for higher-order logic. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, IJCAR 2020, Part I, volume 12166 of LNCS, pages 278–296. Springer, 2020.
- D. Brand. Proving theorems with the modification method. SIAM J. Comput., 4:412–430, 1975.
- Extending SMT solvers to higher-order logic. In Pascal Fontaine, editor, CADE-27, volume 11716 of LNCS, pages 35–54. Springer, 2019.
- Chad E. Brown. Satallax: An automatic higher-order prover. In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, IJCAR 2012, volume 7364 of LNCS, pages 111–117. Springer, 2012.
- A lambda-free higher-order recursive path order. In Javier Esparza and Andrzej S. Murawski, editors, FoSSaCS 2017, volume 10203 of LNCS, pages 461–479. Springer, 2017.
- Alonzo Church. A formulation of the simple theory of types. J. Symb. Log., 5(2):56–68, 1940.
- A linear spine calculus. J. Log. Comput., 13(5):639–688, 2003.
- Simon Cruanes. Extending Superposition with Integer Arithmetic, Structural Induction, and Beyond. Ph.D. thesis, École polytechnique, 2015.
- Simon Cruanes. Superposition with structural induction. In Clare Dixon and Marcelo Finger, editors, FroCoS 2017, volume 10483 of LNCS, pages 172–188. Springer, 2017.
- Łukasz Czajka. Improving automation in interactive theorem provers by efficient encoding of lambda-abstractions. In Jeremy Avigad and Adam Chlipala, editors, CPP 2016, pages 49–57. ACM, 2016.
- Equality-based binary resolution. J. ACM, 33(2):253–289, 1986.
- Higher-order unification via explicit substitutions (extended abstract). In LICS ’95, pages 366–374. IEEE Computer Society, 1995.
- Daniel J. Dougherty. Higher-order unification via combinators. Theor. Comput. Sci., 114(2):273–298, 1993.
- Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag, 2nd edition, 1996.
- Melvin Fitting. Types, Tableaus, and Gödel’s God. Kluwer, 2002.
- Extensional crisis and proving identity. In Franck Cassez and Jean-François Raskin, editors, ATVA 2014, volume 8837 of LNCS, pages 185–200. Springer, 2014.
- M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, 1993.
- Leon Henkin. Completeness in the theory of types. J. Symb. Log., 15(2):81–91, 1950.
- Uncurrying for termination and complexity. J. Autom. Reasoning, 50(3):279–315, 2013.
- Gérard P. Huet. A mechanization of type theory. In Nils J. Nilsson, editor, IJCAI-73, pages 139–146. William Kaufmann, 1973.
- Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In Myla Archer, Ben Di Vito, and César Muñoz, editors, Design and Application of Strategies/Tactics in Higher Order Logics, NASA Technical Reports, pages 56–68, 2003.
- Manfred Kerber. How to prove higher order theorems in first order logic. In John Mylopoulos and Raymond Reiter, editors, IJCAI-91, pages 137–142. Morgan Kaufmann, 1991.
- Cynthia Kop. Higher Order Termination: Automatable Techniques for Proving Termination of Higher-Order Term Rewriting Systems. Ph.D. thesis, Vrije Universiteit Amsterdam, 2012.
- First-order theorem proving and Vampire. In Natasha Sharygina and Helmut Veith, editors, CAV 2013, volume 8044 of LNCS, pages 1–35. Springer, 2013.
- Daniel Leivant. Higher order logic. In Dov M. Gabbay, Christopher J. Hogger, J. A. Robinson, and Jörg H. Siekmann, editors, Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 2, Deduction Methodologies, pages 229–322. Oxford University Press, 1994.
- Fredrik Lindblad. A focused sequent calculus for higher-order logic. In Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, editors, IJCAR 2014, volume 8562 of LNCS, pages 61–75. Springer, 2014.
- Dale A. Miller. A compact representation of proofs. Studia Logica, 46(4):347–370, 1987.
- Translating higher-order clauses to first-order clauses. J. Autom. Reason., 40(1):35–60, 2008.
- Isabelle/HOL: A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
- Fritz H. Obermeyer. Automated Equational Reasoning in Nondeterministic λ𝜆\lambdaitalic_λ-Calculi Modulo Theories ℋ*\mathcal{H}{}^{*}caligraphic_H start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT. Ph.D. thesis, Carnegie Mellon University, 2009.
- Nicolas Peltier. A variant of the superposition calculus. Archive of Formal Proofs, 2016.
- J.A. Robinson. Mechanizing higher order logic. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 4, pages 151–170. Edinburgh University Press, 1969.
- J.A. Robinson. A note on mechanizing higher order logic. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 5, pages 121–135. Edinburgh University Press, 1970.
- The higher-order prover Leo-III. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, IJCAR 2018, volume 10900 of LNCS, pages 108–116. Springer, 2018.
- Progress in the development of automated theorem proving for higher-order logic. In Renate A. Schmidt, editor, CADE-22, volume 5663 of LNCS, pages 116–130. Springer, 2009.
- LEO-II and Satallax on the Sledgehammer test bench. J. Applied Logic, 11(1):91–102, 2013.
- Stephan Schulz. E - a brainiac theorem prover. AI Commun., 15(2-3):111–126, 2002.
- Stephan Schulz. Fingerprint indexing for paramodulation and rewriting. In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, IJCAR 2012, volume 7364 of LNCS, pages 477–483. Springer, 2012.
- Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart Middeldorp, and Andrei Voronkov, editors, LPAR-19, volume 8312 of LNCS, pages 735–743. Springer, 2013.
- Goal directed strategies for paramodulation. In Ronald V. Book, editor, RTA-91, volume 488 of LNCS, pages 150–161. Springer, 1991.
- Manfred Schmidt-Schauß. Unification in a combination of arbitrary disjoint equational theories. J. Symb. Comput., 8:51–99, 1989.
- The TPTP typed first-order form with arithmetic. In Nikolaj Bjørner and Andrei Voronkov, editors, LPAR-18, volume 7180 of LNCS, pages 406–419. Springer, 2012.
- StarExec: A cross-community infrastructure for logic solving. In Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, editors, IJCAR 2014, volume 8562 of LNCS, pages 367–373. Springer, 2014.
- Detecting inconsistencies in large first-order knowledge bases. In Leonardo de Moura, editor, CADE-26, volume 10395 of LNCS, pages 310–325. Springer, 2017.
- Jouko Väänänen. Second-order and higher-order logic. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall 2019 edition, 2019.
- Extending a brainiac prover to lambda-free higher-order logic. In Tomas Vojnar and Lijun Zhang, editors, TACAS 2019, volume 11427 of LNCS, pages 192–210. Springer, 2019.
- Daniel Wand. Superposition: Types and Polymorphism. Ph.D. thesis, Universität des Saarlandes, 2017.
- SPASS version 3.5. In Renate A. Schmidt, editor, CADE-22, volume 5663 of LNCS, pages 140–145. Springer, 2009.
- A comprehensive framework for saturation theorem proving. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, IJCAR 2020, Part I, volume 12166 of LNCS, pages 316–334. Springer, 2020.