Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Derived categories of the Cayley plane and the coadjoint Grassmannian of type F (2005.01989v2)

Published 5 May 2020 in math.AG, math.RT, and math.SG

Abstract: For the derived category of the Cayley plane, which is the cominuscule Grassmannian of Dynkin type $\mathrm{E}_6$, a full Lefschetz exceptional collection was constructed by Faenzi and Manivel. A general hyperplane section of the Cayley plane is the coadjoint Grassmannian of Dynkin type $\mathrm{F}_4$. We show that the restriction of the Faenzi-Manivel collection to such a hyperplane section gives a full Lefschetz exceptional collection, providing the first example of a full exceptional collection on a homogeneous variety of Dynkin type $\mathrm{F}$. We also describe the residual categories of these Lefschetz collections, confirming conjectures of the second and third named author for the Cayley plane and its hyperplane section. The latter description is based on a general result of independent interest, relating residual categories of a variety and its hyperplane section.

Summary

We haven't generated a summary for this paper yet.