Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning-based Tracking of Fast Moving Objects (2005.01802v1)

Published 4 May 2020 in cs.CV

Abstract: Tracking fast moving objects, which appear as blurred streaks in video sequences, is a difficult task for standard trackers as the object position does not overlap in consecutive video frames and texture information of the objects is blurred. Up-to-date approaches tuned for this task are based on background subtraction with static background and slow deblurring algorithms. In this paper, we present a tracking-by-segmentation approach implemented using state-of-the-art deep learning methods that performs near-realtime tracking on real-world video sequences. We implemented a physically plausible FMO sequence generator to be a robust foundation for our training pipeline and demonstrate the ease of fast generator and network adaptation for different FMO scenarios in terms of foreground variations.

Summary

We haven't generated a summary for this paper yet.