Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sample Complexity of Uniform Convergence for Multicalibration (2005.01757v2)

Published 4 May 2020 in cs.LG, cs.DS, and stat.ML

Abstract: There is a growing interest in societal concerns in machine learning systems, especially in fairness. Multicalibration gives a comprehensive methodology to address group fairness. In this work, we address the multicalibration error and decouple it from the prediction error. The importance of decoupling the fairness metric (multicalibration) and the accuracy (prediction error) is due to the inherent trade-off between the two, and the societal decision regarding the "right tradeoff" (as imposed many times by regulators). Our work gives sample complexity bounds for uniform convergence guarantees of multicalibration error, which implies that regardless of the accuracy, we can guarantee that the empirical and (true) multicalibration errors are close. We emphasize that our results: (1) are more general than previous bounds, as they apply to both agnostic and realizable settings, and do not rely on a specific type of algorithm (such as deferentially private), (2) improve over previous multicalibration sample complexity bounds and (3) implies uniform convergence guarantees for the classical calibration error.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Eliran Shabat (1 paper)
  2. Lee Cohen (14 papers)
  3. Yishay Mansour (158 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.