Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simulation free reliability analysis: A physics-informed deep learning based approach (2005.01302v3)

Published 4 May 2020 in stat.ML

Abstract: This paper presents a simulation free framework for solving reliability analysis problems. The method proposed is rooted in a recently developed deep learning approach, referred to as the physics-informed neural network. The primary idea is to learn the neural network parameters directly from the physics of the problem. With this, the need for running simulation and generating data is completely eliminated. Additionally, the proposed approach also satisfies physical laws such as invariance properties and conservation laws associated with the problem. The proposed approach is used for solving three benchmark reliability analysis problems. Results obtained illustrates that the proposed approach is highly accurate. Moreover, the primary bottleneck of solving reliability analysis problems, i.e., running expensive simulations to generate data, is eliminated with this method.

Citations (15)

Summary

We haven't generated a summary for this paper yet.