Papers
Topics
Authors
Recent
2000 character limit reached

The Generalized Birman-Schwinger Principle

Published 3 May 2020 in math.SP, math-ph, and math.MP | (2005.01195v4)

Abstract: We prove a generalized Birman-Schwinger principle in the non-self-adjoint context. In particular, we provide a detailed discussion of geometric and algebraic multiplicities of eigenvalues of the basic operator of interest (e.g., a Schr\"odinger operator) and the associated Birman-Schwinger operator, and additionally offer a careful study of the associated Jordan chains of generalized eigenvectors of both operators. In the course of our analysis we also study algebraic and geometric multiplicities of zeros of strongly analytic operator-valued functions and the associated Jordan chains of generalized eigenvectors. We also relate algebraic multiplicities to the notion of the index of analytic operator-valued functions and derive a general Weinstein-Aronszajn formula for a pair of non-self-adjoint operators.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.