Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Correcting the Autocorrect: Context-Aware Typographical Error Correction via Training Data Augmentation (2005.01158v1)

Published 3 May 2020 in cs.CL, cs.IR, and cs.LG

Abstract: In this paper, we explore the artificial generation of typographical errors based on real-world statistics. We first draw on a small set of annotated data to compute spelling error statistics. These are then invoked to introduce errors into substantially larger corpora. The generation methodology allows us to generate particularly challenging errors that require context-aware error detection. We use it to create a set of English language error detection and correction datasets. Finally, we examine the effectiveness of machine learning models for detecting and correcting errors based on this data. The datasets are available at http://typo.nlproc.org

Citations (7)

Summary

We haven't generated a summary for this paper yet.