Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Concise yet Effective model for Non-Aligned Incomplete Multi-view and Missing Multi-label Learning (2005.00976v2)

Published 3 May 2020 in cs.LG and cs.CV

Abstract: In reality, learning from multi-view multi-label data inevitably confronts three challenges: missing labels, incomplete views, and non-aligned views. Existing methods mainly concern the first two and commonly need multiple assumptions to attack them, making even state-of-the-arts involve at least two explicit hyper-parameters such that model selection is quite difficult. More roughly, they will fail in handling the third challenge, let alone addressing the three jointly. In this paper, we aim at meeting these under the least assumption by building a concise yet effective model with just one hyper-parameter. To ease insufficiency of available labels, we exploit not only the consensus of multiple views but also the global and local structures hidden among multiple labels. Specifically, we introduce an indicator matrix to tackle the first two challenges in a regression form while aligning the same individual labels and all labels of different views in a common label space to battle the third challenge. In aligning, we characterize the global and local structures of multiple labels to be high-rank and low-rank, respectively. Subsequently, an efficient algorithm with linear time complexity in the number of samples is established. Finally, even without view-alignment, our method substantially outperforms state-of-the-arts with view-alignment on five real datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xiang Li (1003 papers)
  2. Songcan Chen (74 papers)
Citations (41)

Summary

We haven't generated a summary for this paper yet.