Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comprehensive Study on Challenges in Deploying Deep Learning Based Software (2005.00760v4)

Published 2 May 2020 in cs.SE

Abstract: Deep learning (DL) becomes increasingly pervasive, being used in a wide range of software applications. These software applications, named as DL based software (in short as DL software), integrate DL models trained using a large data corpus with DL programs written based on DL frameworks such as TensorFlow and Keras. A DL program encodes the network structure of a desirable DL model and the process by which the model is trained using the training data. To help developers of DL software meet the new challenges posed by DL, enormous research efforts in software engineering have been devoted. Existing studies focus on the development of DL software and extensively analyze faults in DL programs. However, the deployment of DL software has not been comprehensively studied. To fill this knowledge gap, this paper presents a comprehensive study on understanding challenges in deploying DL software. We mine and analyze 3,023 relevant posts from Stack Overflow, a popular Q&A website for developers, and show the increasing popularity and high difficulty of DL software deployment among developers. We build a taxonomy of specific challenges encountered by developers in the process of DL software deployment through manual inspection of 769 sampled posts and report a series of actionable implications for researchers, developers, and DL framework vendors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Zhenpeng Chen (39 papers)
  2. Yanbin Cao (5 papers)
  3. Yuanqiang Liu (3 papers)
  4. Haoyu Wang (309 papers)
  5. Tao Xie (117 papers)
  6. Xuanzhe Liu (59 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.