Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-View Self-Attention for Interpretable Drug-Target Interaction Prediction (2005.00397v2)

Published 1 May 2020 in cs.LG and stat.ML

Abstract: The drug discovery stage is a vital aspect of the drug development process and forms part of the initial stages of the development pipeline. In recent times, machine learning-based methods are actively being used to model drug-target interactions for rational drug discovery due to the successful application of these methods in other domains. In machine learning approaches, the numerical representation of molecules is critical to the performance of the model. While significant progress has been made in molecular representation engineering, this has resulted in several descriptors for both targets and compounds. Also, the interpretability of model predictions is a vital feature that could have several pharmacological applications. In this study, we propose a self-attention-based multi-view representation learning approach for modeling drug-target interactions. We evaluated our approach using three benchmark kinase datasets and compared the proposed method to some baseline models. Our experimental results demonstrate the ability of our method to achieve competitive prediction performance and offer biologically plausible drug-target interaction interpretations.

Citations (27)

Summary

We haven't generated a summary for this paper yet.