Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nearly invariant subspaces with applications to truncated Toeplitz operators (2005.00378v3)

Published 1 May 2020 in math.FA

Abstract: In this paper we first study the structure of the scalar and vector-valued nearly invariant subspaces with a finite defect. We then subsequently produce some fruitful applications of our new results. We produce a decomposition theorem for the vector-valued nearly invariant subspaces with a finite defect. More specifically, we show every vector-valued nearly invariant subspace with a finite defect can be written as the isometric image of a backwards shift invariant subspace. We also show that there is a link between the vector-valued nearly invariant subspaces and the scalar-valued nearly invariant subspaces with a finite defect. This is a powerful result which allows us to gain insight in to the structure of scalar subspaces of the Hardy space using vector-valued Hardy space techniques. These results have far reaching applications, in particular they allow us to develop an all encompassing approach to the study of the kernels of: the Toeplitz operator, the truncated Toeplitz operator, the truncated Toeplitz operator on the multiband space and the dual truncated Toeplitz operator.

Summary

We haven't generated a summary for this paper yet.