Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scott Continuity in Generalized Probabilistic Theories (2005.00210v1)

Published 1 May 2020 in cs.LO and math.OA

Abstract: Scott continuity is a concept from domain theory that had an unexpected previous life in the theory of von Neumann algebras. Scott-continuous states are known as normal states, and normal states are exactly the states coming from density matrices. Given this, and the usefulness of Scott continuity in domain theory, it is natural to ask whether this carries over to generalized probabilistic theories. We show that the answer is no - there are infinite-dimensional convex sets for which the set of Scott-continuous states on the corresponding set of 2-valued POVMs does not recover the original convex set, but is strictly larger. This shows the necessity of the use of topologies for state-effect duality in the general case, rather than purely order theoretic notions.

Summary

We haven't generated a summary for this paper yet.