Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds for 2-Selmer ranks in terms of seminarrow class groups (2005.00194v4)

Published 1 May 2020 in math.NT

Abstract: Let $E$ be an elliptic curve over a number field $K$ defined by a monic irreducible cubic polynomial $F(x)$. When $E$ is \textit{nice} at all finite primes of $K$, we bound its $2$-Selmer rank in terms of the $2$-rank of a modified ideal class group of the field $L=K[x]/{(F(x))}$, which we call the \textit{semi-narrow class group} of $L$. We then provide several sufficient conditions for $E$ being nice at a finite prime. As an application, when $K$ is a real quadratic field, $E/K$ is semistable and the discriminant of $F$ is totally negative, then we frequently determine the $2$-Selmer rank of $E$ by computing the root number of $E$ and the $2$-rank of the narrow class group of $L$.

Summary

We haven't generated a summary for this paper yet.