Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequence Information Channel Concatenation for Improving Camera Trap Image Burst Classification (2005.00116v2)

Published 30 Apr 2020 in cs.CV and cs.LG

Abstract: Camera Traps are extensively used to observe wildlife in their natural habitat without disturbing the ecosystem. This could help in the early detection of natural or human threats to animals, and help towards ecological conservation. Currently, a massive number of such camera traps have been deployed at various ecological conservation areas around the world, collecting data for decades, thereby requiring automation to detect images containing animals. Existing systems perform classification to detect if images contain animals by considering a single image. However, due to challenging scenes with animals camouflaged in their natural habitat, it sometimes becomes difficult to identify the presence of animals from merely a single image. We hypothesize that a short burst of images instead of a single image, assuming that the animal moves, makes it much easier for a human as well as a machine to detect the presence of animals. In this work, we explore a variety of approaches, and measure the impact of using short image sequences (burst of 3 images) on improving the camera trap image classification. We show that concatenating masks containing sequence information and the images from the 3-image-burst across channels, improves the ROC AUC by 20% on a test-set from unseen camera-sites, as compared to an equivalent model that learns from a single image.

Citations (3)

Summary

We haven't generated a summary for this paper yet.