Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Binary autoencoder with random binary weights (2004.14717v1)

Published 30 Apr 2020 in cs.LG and stat.ML

Abstract: Here is presented an analysis of an autoencoder with binary activations ${0, 1}$ and binary ${0, 1}$ random weights. Such set up puts this model at the intersection of different fields: neuroscience, information theory, sparse coding, and machine learning. It is shown that the sparse activation of the hidden layer arises naturally in order to preserve information between layers. Furthermore, with a large enough hidden layer, it is possible to get zero reconstruction error for any input just by varying the thresholds of neurons. The model preserves the similarity of inputs at the hidden layer that is maximal for the dense hidden layer activation. By analyzing the mutual information between layers it is shown that the difference between sparse and dense representations is related to a memory-computation trade-off. The model is similar to an olfactory perception system of a fruit fly, and the presented theoretical results give useful insights toward understanding more complex neural networks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.