Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online unsupervised deep unfolding for MIMO channel estimation (2004.14615v4)

Published 30 Apr 2020 in eess.SP and stat.ML

Abstract: Channel estimation is a difficult problem in MIMO systems. Using a physical model allows to ease the problem, injecting a priori information based on the physics of propagation. However, such models rest on simplifying assumptions and require to know precisely the system configuration, which is unrealistic.In this paper, we propose to perform online learning for channel estimation in a massive MIMO context, adding flexibility to physical models by unfolding a channel estimation algorithm (matching pursuit) as a neural network. This leads to a computationally efficient neural network that can be trained online when initialized with an imperfect model. The method allows a base station to automatically correct its channel estimation algorithm based on incoming data, without the need for a separate offline training phase.It is applied to realistic channels and shows great performance, achieving channel estimation error almost as low as one would get with a perfectly calibrated system.

Citations (3)

Summary

We haven't generated a summary for this paper yet.