Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Production Phases Based on Sensor Values using 1D-CNNs (2004.14475v1)

Published 24 Apr 2020 in cs.LG and eess.SP

Abstract: In the context of Industry 4.0, the knowledge extraction from sensor information plays an important role. Often, information gathered from sensor values reveals meaningful insights for production levels, such as anomalies or machine states. In our use case, we identify production phases through the inspection of sensor values with the help of convolutional neural networks. The data set stems from a tempering furnace used for metal heat treating. Our supervised learning approach unveils a promising accuracy for the chosen neural network that was used for the detection of production phases. We consider solutions like shown in this work as salient pillars in the field of predictive maintenance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.