Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Demographics Should Not Be the Reason of Toxicity: Mitigating Discrimination in Text Classifications with Instance Weighting (2004.14088v3)

Published 29 Apr 2020 in cs.CL, cs.LG, and stat.ML

Abstract: With the recent proliferation of the use of text classifications, researchers have found that there are certain unintended biases in text classification datasets. For example, texts containing some demographic identity-terms (e.g., "gay", "black") are more likely to be abusive in existing abusive language detection datasets. As a result, models trained with these datasets may consider sentences like "She makes me happy to be gay" as abusive simply because of the word "gay." In this paper, we formalize the unintended biases in text classification datasets as a kind of selection bias from the non-discrimination distribution to the discrimination distribution. Based on this formalization, we further propose a model-agnostic debiasing training framework by recovering the non-discrimination distribution using instance weighting, which does not require any extra resources or annotations apart from a pre-defined set of demographic identity-terms. Experiments demonstrate that our method can effectively alleviate the impacts of the unintended biases without significantly hurting models' generalization ability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Guanhua Zhang (24 papers)
  2. Bing Bai (39 papers)
  3. Junqi Zhang (7 papers)
  4. Kun Bai (24 papers)
  5. Conghui Zhu (20 papers)
  6. Tiejun Zhao (70 papers)
Citations (65)